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Experiments with multiple diffusion wave vectors are known to carry more information than what is
available from standard diffusion experiments. Here we consider a special case of this class of pulse
sequences, the double wave vector diffusion experiment, and use the cumulant expansion of the signal
to introduce the displacement correlation tensor. We discuss its physical interpretation and properties,
noting in particular that its short time behavior allows determination of the surface to volume ratio of
the pore space. We present a general expression for the displacement correlation tensor, and provide
explicit expressions for a few model geometries. We then show that the scatter matrix characterizing
the orientation distribution of an ensemble of cylinders is simply related to the displacement correlation
tensor. This result is generalized to ensembles of pores with arbitrary shapes allowing a precise formu-
lation of the influence of microstructural and ensemble anisotropy on the double wave vector diffusion
signal in the Gaussian phase approximation. Finally, as a new application of the double wave vector dif-
fusion signal, we analyze its behavior in a curving fiber, and suggest that the displacement correlation
tensor may be used to estimate sub-voxel fiber curvature and deflection angle. The theoretical results
are corroborated by computer simulations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Pulsed field gradient diffusion sequences with multiple diffu-
sion encoding blocks have recently gained renewed interest in
the magnetic resonance community. Proposed originally in a spe-
cial case by Cory et al. [1,2] as a means of characterizing compart-
mental eccentricity, it was soon adapted by Callaghan and
coworkers to allow estimation of velocity auto-correlations [3]
and the dispersion tensor [4]. Jerschow and Müller [5] suggested
its use in suppressing convection artifacts in MR diffusion mea-
surements. Mitra contributed a theoretical analysis [6] of the diffu-
sion signal in the narrow pulse regime focusing mainly on the
special case with two independent diffusion encoding blocks, the
so-called double wave vector diffusion experiment. He derived
an expression demonstrating that the dependence of the diffusion
signal at low diffusion weighting on the angle between the associ-
ated diffusion wave vectors could be used to (i) distinguish a mac-
roscopically isotropic system of anisotropic pores with restricted
diffusion from e.g. systems with a distribution of diffusion coeffi-
cients and (ii) estimate the size of confining pores. These properties
continue to inspire a large part of current research on multiple
ll rights reserved.
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wave vector diffusion. On the experimental side, Koch and Fins-
terbusch [7] and Komlosh et al. [8] provided some early demon-
strations on biological samples, and the former group has
recently obtained promising results in the human corticospinal
tract in vivo [9]. A number of studies have been performed on
phantoms [10–12] and biological tissue, including gray matter
[13] and spinal cord [14–16]. These experimental results generally
lend encouragement to the feasibility of the theoretical predictions
first put forth by Mitra.

Özarslan and Basser studied diffusion–diffraction phenomena
in the setting of multiple pulsed field gradient experiments [17],
and suggested an approach which has subsequently been demon-
strated to provide a robust determination of pore sizes [18,19],
even for polydisperse samples where the diffraction patterns from
the single pulse diffusion experiment tend to disappear. In a later
series of comprehensive theoretical works [11,20,21], Özarslan
and coworkers have extended the framework originally introduced
by Barzykin and Grebenkov [22,23] to investigate the behavior of
the double pulsed field gradient experiment for diffusion in re-
stricted geometries, allowing a mathematical calculation of the sig-
nal in a wide range of model systems and notably for a broad
selection of experimental conditions. A point of main focus there
has been the sensitivity of the double wave vector diffusion exper-
iment to both microstructural anisotropy (non-spherical pore
shapes) and ensemble anisotropy. The latter term refers to an
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anisotropic orientation distribution of pores with microstructural
anisotropy, a problem also considered by Finsterbusch and Koch,
who developed a tensor formalism on the basis of a Taylor expan-
sion of the signal in the limit of large diffusion times and zero mix-
ing time [24,25]. By considering the difference between the signals
arising from two double wave vector diffusion experiments, one
with parallel gradients and one with anti-parallel gradients, they
introduced tensors from which microstructural anisotropy and
pore size could be characterized.

In this work, we employ the cumulant expansion of the double
wave vector diffusion signal and demonstrate its use for determi-
nation of the spin displacement correlation tensor. As the diffusion
time becomes large and the mixing time is set to zero, this tensor
becomes equivalent to the one introduced by Koch and Fins-
terbusch [24]. We discuss its physical significance and properties,
and obtain an expression relating its short diffusion time behavior
to the surface to volume ratio of the pore space, analogous to the
short time behavior of the diffusion coefficient [26,27]. We present
a general expression for the displacement correlation tensor in
terms of eigenfunctions, and use it to provide exact expressions
for example model geometries. For a collection of long cylinders,
we show that the displacement correlation tensor is closely related
to the scatter matrix of the cylinder orientation distribution. We
then go on to generalize this result to collections of pores of arbi-
trary shapes, and obtain a simple expression relating the displace-
ment correlation tensor, and in fact the double wave vector
diffusion signal in the Gaussian phase approximation, to pore
and ensemble characteristics. This result is a precise statement
about which aspects of the pore orientation distribution influence
the double wave vector diffusion signal, and how it combines with
the microstructural anisotropy. Finally we point to a new possible
use of the double wave vector diffusion experiment by considering
the behavior of the displacement correlation tensor in curved fi-
bers, and show how it could in principle be used to detect sub-vox-
el fiber curvature and deflection angle.

2. Theory

2.1. Cumulant expansion of the double wave vector diffusion signal

The double wave vector diffusion sequence is illustrated in
Fig. 1, where the experimental parameters are defined also. Only
the special case of identical diffusion periods (D1 = D2 � D) will
be considered, and we will assume the narrow pulse regime [28]
to allow the Fourier relationship in Eq. (1) below. We employ the
convention q = cgd for the diffusion wave vector, where c is the
gyromagnetic ratio, g the diffusion gradient, and d its duration.
We consider the signal S(q1, q2), normalized so S(0, 0) = 1, from
the double wave vector pulse sequence with diffusion gradients
placed at t1 = 0, t2 = D, t3 = D + s, and t4 = 2D + s, resulting in diffu-
sion wave vectors q1 and q2, and

Sðq1;q2Þ ¼ he�iq1 �ðr2�r1Þ�iq2 �ðr3�r4Þi ¼ he�iq1 �R1þiq2 �R2Þi ¼ he�i/i; ð1Þ
Fig. 1. Illustration of the basic spin echo double wave vector diffusion pulse
sequence with pulse sequence parameters g1 and g2 (diffusion gradients), d
(gradient duration), D1 and D2 (diffusion times) and s (mixing time). Here we only
consider sequences with D1 = D2.
where ri = r(ti) is the spin position, R1 and R2 are the displacements
during the first and second diffusion encoding intervals (e.g.
R1 = r2 � r1), and / = q1�R1 � q2�R2 is the spin phase. Angular brack-
ets signify averaging over all spins contributing to the signal. The
cumulant expansion is valid for a large class of probability distribu-
tions [29,30] and applied to the phase distribution, it reads

log S ¼ loghe�i/i ¼ h�i/i � 1
2
ðh/2i � h/i2Þ þ � � � ð2Þ

to second order in the diffusion wave vectors. In the absence of
coherent motion, we expect hRii = 0, and so only the second mo-
ment contributes to this order:

h/2i ¼ q1aq1bhR1aR1bi þ q2aq2bhR2aR2bi � 2q1aq2bhR1aR2bi; ð3Þ

where from here onwards greek letter subscripts label cartesian
components and sum over repeated indices is implied (Einstein
summation convention)—i.e. q1aR1a � q1xR1x + q1yR1y + q1zR1z, etc.
It is reasonable to assume that diffusion is a stationary process over
the relevant experimental timescales, ensuring that the mean
square displacement tensors during the two diffusion encoding
blocks are identical, i.e. hR1aR1bi = h R2aR2bi. Note that for small dif-
fusion times D ? 0, hR1aR1bi = 2DabD, where Dab is the diffusion
tensor. The signal from the double wave vector diffusion sequence
in the second-order cumulant expansion (Gaussian phase approxi-
mation) thus reads:

S ¼ exp �1
2
ðq1aq1b þ q2aq2bÞhR1aR1bi þ q1aq2bhR1aR2bi

� �
: ð4Þ

The tensor

Qabðs;DÞ � hR1aR2bi
¼ hðrað0Þ � raðDÞÞðrbðDþ sÞ � rbð2Dþ sÞÞi
¼ hr1ar3bi þ hr2ar4bi � hr1ar4bi � hr2ar3bi ð5Þ

is an explicit measure of correlation between displacements in the
two periods, i.e. the displacement correlation tensor, and will be the
main focus of this work. Note importantly that it is the correlations
in the displacements of a single spin. It can be extracted using pairs
of double diffusion wave vector experiments, for example using

log Sðq; qÞ � log Sðq;�qÞ
2

¼ qT Qq: ð6Þ

In the presence of flow, Eq. (6) can be generalized by taking absolute
values of the signal before the logarithm. An analogous result cor-
rect to Oðq4Þ applies for the Taylor expansion of the signal, and
was considered in the special case of s = 0 and large diffusion times
D in [24], but we expect the cumulant expansion to have a wider
range of applicability, as will be demonstrated below. Next, we note
some properties of Q.

2.2. The displacement correlation tensor

In many cases of interest (excluding again flow), the probability
of a random walk trajectory does not depend on the direction in
which it is traversed, and therefore hR1aR2bi = h R2aR1bi. It follows
that in d dimensions Q is a real, symmetric d � d matrix, with en-
tries Qab = hR1aR2bi—i.e. the average product of the spin displace-
ments during the two diffusion encoding blocks, see Fig. 2 for an
illustration. It can thus be obtained from a minimum of one q = 0
experiment, to render the signal normalized, plus 2 � 6 double dif-
fusion experiments to supply sufficient information to extract the
6 independent components using Eq. (6). A convenient set of diffu-
sion directions can be obtained from conventional DTI acquisition
schemes by using two sets of directions in the double wave vector
experiments ðn̂; n̂Þ and ðn̂;�n̂Þ for each diffusion gradient direction
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Fig. 2. The relation of Qab = h R1aR2bi to a random walk trajectory. The solid lines
represent the trajectory during the two diffusion encoding blocks, and the dashed
line represents the motion during the mixing time.
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n̂ in the DTI set. Note that the trace of Q, Tr(Q), can be obtained
from 2 � 3 measurements.

For Markovian diffusion with a Gaussian propagator (Gaussian
diffusion), R1 is independent of R2, and therefore Q = 0. A nonzero
Q thus reflects non-Gaussian diffusion. Moreover, it reflects non-
Gaussian properties as induced by microscopic factors, and not
merely those that may be a result of ensemble properties, such
as from averaging over a distribution of diffusion coefficients. That
is, for an ensemble of Gaussian compartments, Q = 0, even though
the signal from a single wave vector diffusion experiment need not
be mono-exponential. Thus Q can be interpreted as an index of
compartmental non-Gaussianity of diffusion. In contrast to the
kurtosis [31], a marker of non-Gaussian diffusion, Q can be ob-
tained using low diffusion weighting since it appears already at
second order in the cumulant expansion whereas the kurtosis ap-
pears at fourth order.

In many situations of interest, correlations are induced mainly
by boundaries of a confining pore, e.g. a cell. In this case, reflections
(and barriers in general) will tend to cause anti-correlations, and
thus Q will be a non-positive definite matrix—see below for a
mathematical derivation of this property.

The displacement correlation tensor depends on two timing
parameters, the diffusion time D = t2 � t1 and the ‘‘mixing time”
s = t3 � t2. In the limit D ?1, Qab ? �hra(D) rb(D + s)i = �hra(0)
rb(s)i, and it can therefore be related to the mean square displace-
ment tensor and the pore ‘‘radius of gyration tensor” hrarbi

Qab � �hrað0ÞrbðsÞi

¼ �hrarbi þ
1
2
hðraðsÞ � rað0ÞÞðrbðsÞ � rbð0ÞÞi: ð7Þ

The validity of this equation is readily confirmed by factoring out
the second term on the right-hand side,

2DabðsÞs � hðraðsÞ � rað0ÞÞðrbðsÞ � rbð0ÞÞi
¼ hraðsÞrbðsÞi � hrað0ÞrbðsÞi � hraðsÞrbð0Þi
þ hrað0Þrbð0Þi

¼ 2hrað0Þrbð0Þi � 2hrað0ÞrbðsÞi ð8Þ

since h(ra(s)rb(0)i = h (ra(0)rb(s)i, and where we have introduced the
time-dependent diffusion tensor Dab(t). Therefore, in the special
case that D ?1 and s = 0, �Q simplifies to the radius of gyration
tensor also considered in [24].

In the opposite regime, building on Mitra’s [26,27] classical re-
sult for the short time behavior of the time-dependent diffusion
coefficient, it is straightforward to derive the behavior of Tr(Q) in
systems with uniform spin density in the limit of a small diffusion
time D, here reproduced for s = 0

TrðQÞ ¼ �S=V
8ð

ffiffiffi
2
p
� 1Þ

3
ffiffiffiffi
p
p ðDDÞ3=2 þ OððDDÞ2Þ; ð9Þ

where S/V is the surface to volume ratio and D = limt?0Tr(D(t)) is
the free diffusion constant. This result is a consequence of the fact
that the propagator near a reflecting wall is the sum of a Gaussian
and its mirror image, but is derived most easily by reexpressing
Eq. (5) in terms of sums of mean square displacements and using
the result from Mitra et al. [26,27] for the short time behavior of
the time-dependent diffusion coefficient. To see this, we use Eq.
(8) to rewrite Eq. (5) as follows:

Qabðs;DÞ ¼ hr1ar3bi þ hr2ar4bi � hr1ar4bi � hr2ar3bi
¼ 2DabðDþ sÞðDþ sÞ þ 2DabðDþ sÞðDþ sÞ
� 2Dabð2Dþ sÞð2Dþ sÞ � 2DabðsÞs: ð10Þ

Taking the trace of Eq. (10) in the limit D ? 0 and with s = 0, and
substituting the results from Mitra et al. [26,27] for the time-depen-
dent diffusion coefficient yields Eq. (9). Thus, like the time-depen-
dent diffusion coefficient, the displacement correlation tensor
decreases as a power law in time with the constant of proportion-
ality reflecting the surface to volume ratio, but in contrast to the dif-
fusion coefficient, it decreases from an initial value of zero. The
physical origin of this effect is similar to that for the diffusion coef-
ficient, and is due to spins in a boundary layer with volume fraction
S
ffiffiffiffiffiffiffi
DD
p

=V experiencing displacement correlations on the order of DD
due to the reflecting walls. Note that as a consequence of Eq. (10),
many of the properties of double wave vector diffusion experiments
are reflected in the time-dependent diffusion constant.

The displacement correlation tensor can readily be calculated in
any system in which the diffusion propagator P(r2—r1,t) and spin
density q(r) are known. For example, if the eigenfunctions Wn

and eigenvalues kn of the diffusion Laplace operator Dr2 can be
found, we can employ the spectral representation [32] of the
propagator

Pðr2jr1; tÞ ¼
X1
n¼1

e�kntW�nðr1ÞWnðr2Þ ð11Þ

to express each of the terms in Eq. (5) as

hr1ar3bi ¼
Z

ddr1ddr3qðbf r1ÞPðr3jr1; sþ DÞr1ar3b

¼
X1
n¼1

e�knðsþDÞ
Z

ddr1ddr3qðr1ÞW�nðr1ÞWnðr3Þr1ar3b

�
X1
n¼1

e�knðsþDÞSðnÞab ; ð12Þ

where

SðnÞab ¼
Z

ddr1ddr3qðr1ÞW�nðr1ÞWnðr3Þr1ar3b:

Collecting all the terms in Eq. (5), we find for Q the expression:

Qab ¼ �
X1
n¼1

SðnÞab e�knsð1� e�knDÞ2: ð13Þ

It is clear from this equation that in the case of constant spin density
q(r), the diagonal entries of Q in any coordinate system are non-po-
sitive, and thus Q is non-positive definite as noted above.

Using Eq. (13) one may readily calculate exact expressions for Q
in model geometries. For example, in the case of diffusion between
parallel plates separated by distance a along the z-direction, the
only non-zero component of Q is

Q zz ¼ �8a2
X1
m¼0

e�a2
mDs=a2 ð1� e�a2

mDD=a2 Þ2=a4
m; ð14Þ
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where am = (2m + 1)p. For an infinite cylinder of radius a oriented
along the z direction, we find

Q ¼ K

1 0 0
0 1 0
0 0 0

2
64

3
75; ð15Þ

where

Kðs;DÞ ¼ �2a2
X1
m¼1

e�b2
mDs=a2 ð1� e�b2

mDD=a2 Þ2=ðb2
mðb

2
m � 1ÞÞ;35 ð16Þ

and bm is the mth root of the Bessel function derivative J01ðxÞ.

2.3. Influence of ensemble and microstructural anisotropy

2.3.1. Cylindrical pores
The anisotropy of the displacement correlation tensor reflects

both microscopic and macroscopic anisotropy, and an ensemble
of identical cylinders represents a good starting point for discuss-
ing the combined influence of microstructural anisotropy and
ensemble anisotropy on Q. Consider first a single cylinder oriented
along the direction û. We would like to express the value of the
scalar n̂T Q n̂ for some arbitrary direction n̂. This is most easily eval-
uated in the coordinate system in which the z-axis is parallel to û,
and n̂ is in the zx plane at an angle h to û. From Eq. (15) and
n̂ ¼ ðsin h; 0; cos hÞT it follows immediately that

Qðn̂Þ � n̂T Q n̂ ¼ K sin2 h ¼ Kð1� ðû � n̂Þ2Þ: ð17Þ

In an ensemble of cylinders, the average in Eqs. (1)–(5) can be car-
ried out in two steps by first averaging over spins in a single pore
and then averaging over pores. Applied to displacement correlation
tensor, the first averaging yields the pore specific Q, and the second
averaging the sample Q. Specifying the ensemble of cylinders by
their orientation distribution function f ðûÞ, we can thus readily
compute the exact displacement correlation tensor for the entire
system by averaging Eq. (17) over cylinder orientations:

Qðn̂Þ ¼ K
Z

dûf ðûÞð1� ðû � n̂Þ2Þ ¼ Kð1� nanbhuaubif Þ

� Kð1� n̂T Tn̂Þ: ð18Þ

The subscript on the angular brackets is a reminder that this aver-
age is over cylinder orientations. The tensor Tab = huaubif is the
explicitly symmetric scatter matrix or orientation matrix [33] of
the cylinder orientation distribution, and is a spherical analogue
of the second moment. Its eigenvectors specify the main directions
in the distribution, and the eigenvalues reflect the scatter around
these directions. The trace of the scatter matrix is always 1, and
T = I/3 for an isotropic distribution, where I is the identity matrix.
Thus we conclude from Eq. (18)

Q ¼ KðI� TÞ: ð19Þ

This equation shows that microstructural anisotropy as reflected by
a nonzero K combines multiplicatively with ensemble anisotropy as
expressed by I � T. Also, since T contains five independent ele-
ments, both sides of Eq. (19) involve six unknowns and thus these
two sources of anisotropy can be separated given a complete mea-
surement of Q. Eq. (19) demonstrates explicitly which aspect of the
orientation distribution influences the displacement correlation
tensor, and in fact the double wave vector diffusion signal to second
order in q, since an analogous relationship can be established for the
mean square displacement tensor hR1aR1bi [34], see below. Note
that Tr(Q) = 2K, which can be used to obtain a rotationally invariant
measure of the pore size [24]. For later use we note that Eq. (19) im-
plies the existence of simultaneous eigenvectors of Q and T with
eigenvalues kðQÞj and kðTÞj , respectively, satisfying:
kðQÞj ¼ Kð1� kðTÞj Þ; j ¼ 1;2;3: ð20Þ
2.3.2. Arbitrary pore shapes
The result obtained above for cylindrical pores can be extended

to apply for general pore shapes and for arbitrary orientation dis-
tributions. By expressing the Q corresponding to a single pore in
its principal coordinate system specified by eigenvectors ðû; v̂; ŵÞ,

Q ¼
A 0 0
0 B 0
0 0 C

2
64

3
75 ¼ AûûT þ Bv̂v̂T þ CŵŵT ; ð21Þ

where A, B and C are the eigenvalues corresponding to û; v̂ and ŵ,
we can average immediately over the distribution of pore orienta-
tions to obtain the sample Q:

Q ¼ ATð1Þ þ BTð2Þ þ CTð3Þ; ð22Þ

where T(i) are the scatter matrices corresponding to each of the pore
principal axes; i.e. Tð1Þab ¼ huaubif , Tð2Þab ¼ hvavbif and T ð3Þab ¼ hwawbif .
Equation (22) applies to arbitrary shapes and orientation distribu-
tions, and specifies precisely how microstructural anisotropy and
ensemble anisotropy combine to produce the displacement correla-
tion tensor. Moreover, it reveals exactly what aspects of the orien-
tation distribution function are relevant, and it is the second
moments encapsulated in the principal directions scatter matrices.
Note that the scatter matrices in Eq. (22) are not independent: since
the eigenvectors constitute a complete set in R3, we find the con-
straint T(1) + T(2) + T(3) = I. Thus, 10 independent numbers are gener-
ally required to characterize all three scatter matrices; 5 from each
of T(1) and T(2), and the constraint above then gives T(3). Therefore,
microstructural and ensemble anisotropy cannot be separated
without additional knowledge acquired e.g. from the time depen-
dence of Q. Again, since Eq. (21) is valid for any diagonalizable ten-
sor, a similar analysis can be made for the mean displacement
tensor (and thus the diffusion tensor). In other words, D can be
substituted for Q in Eq. (22) if A, B and C are also substituted with
the eigenvalues of the single pore diffusion tensor. Combined, this
shows exactly how the signal is influenced by pore and ensemble
anisotropy in the Gaussian phase approximation.

It is instructive to understand how the special case in Eq. (19)
(cylinders) is recovered from the general case in Eq. (22). In the
cylindrical case, there is only one direction of symmetry corre-
sponding to the cylinder axis, say ŵ, and A = B, C = 0. The other
two eigenvectors can be chosen arbitrarily with the constraint that
an orthonormal coordinate system results. Thus we can take
û ¼ ê� ðŵ � êÞŵ, where ê is an arbitrary unit vector, independent
of ŵ. This will provide a valid second eigenvector apart from a
set of measure 0 where ê is parallel to ŵ. The appropriate scatter
matrix is now computed using heaebi = dab/3 and independence of
ê and ŵ:

Tð1Þab ¼ huaubi
¼ heaebi þ hwcecw�e�wawbi � heaw�e�wbi � hebw�e�wai

¼ dab=3þ hwawbi=3� 2hwawbi=3 ¼ dab=3� Tð3Þab =3: ð23Þ

For the remaining scatter matrix T(2), we rely on ‘‘completeness” by
putting T(2) = I � T(1) � T(3) which then gives T(2) = 2/3(I � T(3)) upon
using Eq. (23). Inserting these results into Eq. (22) recovers Eq. (19)
with A = B = K.

2.4. Double wave vector diffusion in curving fibers

Having established a general understanding of how microstruc-
tural and ensemble anisotropy combine in the double wave vector
diffusion weighted signal in the Gaussian phase approximation, we
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turn now to a new possible use of this experiment to measure the
curvature and deflection angle of long tube-shaped pores such as
myelinated axons. A possible application could be as a method to
detect fiber populations with significant subvoxel curvature, such
as small cortical U-fibers, or in regions of terminal branching from
white matter fiber bundles.

We consider diffusion inside a long fiber of constant radius a,
and in the limit where the mixing time s and the diffusion time
D are both much larger than a2/D, the fiber tract can be modelled
as a pack of lines in three dimensions (i.e. zero width). Then, in a
voxel containing straight fiber bundles, the axons will appear
approximately as straight lines with one-dimensional Gaussian
diffusion, and thus Q = 0 (valid for small D also, c.f. Eq. (16)). On
the other hand, in voxels with curving fiber populations, Q is non-
zero because displacement correlations are experienced by spins
whose directions of motion depend on their positions along the
curving fiber. Therefore, voxels with straight or curving fiber bun-
dles may in principle be distinguished by a nonzero value of the
displacement correlation tensor, which will also allow an estimate
of the curvature in the latter case, as will be demonstrated shortly.
Note that the physical basis for the nonvanishing Q in this situation
bears a close resemblance to exchange between two domains char-
acterized by different diffusion parameters [4].

To be definite, consider the model curving fiber in Fig. 3. It con-
sists of two straight segments in the directions specified by n̂1 and
n̂2 with relative angle w (deflection angle), connected by a circular
arc of radius R subtending an angle / = p � w. For simplicity, the
entire fiber is supposed to be planar—see [35] for a somewhat sim-
ilar model of a curving fiber. The diffusion problem can be solved in
this case since diffusion along the fiber is one-dimensional and
Gaussian. We consider in detail the two extreme cases of
DD/(R/)2� 1 (large curvature) and DD/(R/)2	 1 (small curva-
ture), under the condition that DD/L2	 1, where L is the length
of the fiber residing inside the voxel. Accordingly, we keep only
leading terms of DD/L2 as DD/L2 ? 0 in the following calculations.
We let s ? 0 in our computations, with the understanding that the
condition of s� a2/D is fulfilled by working with infinitely thin
tubes. The results are thus valid for a2/D	 s	 D	 L2/D.

In the first case DD/(R/)2� 1, the fiber appears as two straight
lines meeting at an angle w. The position of a diffusing spin can
therefore be written in terms of the intrinsic arc length s on the fi-
ber as

rðtÞ ¼ sðtÞðn̂2hðsðtÞÞ � n̂1hð�sðtÞÞÞ; ð24Þ
x̂

ŷ

1̂n 2n̂ψ

R

Fig. 3. Idealized model of a curving planar fiber introducing geometric parameters
1/R (radius of curvature), L (fiber length), w (deflection angle), and n̂1 and n̂2

(direction unit vectors).
where s(t) is the position at time t of a one-dimensional random
walk and h(s) is the Heaviside step function. Using numerical sub-
scripts to indicate time points, the displacement is

R1 ¼ r2 � r1

¼ n̂2ðs2hðs2Þ � s1hðs1ÞÞ � n̂1ðs2hð�s2Þ � s1hð�s1ÞÞ ð25Þ

and similarly for R2, and we find

Qab ¼ aðn1an1b þ n2an2bÞ � bðn1an2b þ n2an1bÞ; ð26Þ

where a and b can be computed explicitly using

a ¼ hðs2hðs2Þ � s1hðs1ÞÞðs4hðs4Þ � s3hðs3Þi
b ¼ hðs2hðs2Þ � s1hðs1ÞÞðs4hð�s4Þ � s3hð�s3Þi; ð27Þ

applicable also for s > 0. In fact, the form of Eq. (26) can be estab-
lished by general arguments, since this is the only way to construct
a symmetric rank 2 tensor from n̂1 and n̂2, which completely spec-
ify the problem in this limit, while respecting invariance under ex-
change of labels 1 and 2. Furthermore, since Q = 0 when n̂1 ¼ �n̂2,
we conclude a = �b, which is in agreement with explicit calcula-
tions using Eq. (27). Q has the eigenvectors ðn̂1 þ n̂2Þ=

ffiffiffi
2
p

(i.e. ŷ in
Fig. 3) with eigenvalue 2að1þ n̂1 � n̂2Þ and two degenerate zero
eigenvalues with eigenvectors ðn̂2 � n̂1Þ=

ffiffiffi
2
p

(i.e. x̂ in Fig. 3) and
n̂2 � n̂1 (ẑ in Fig. 3). Note that the latter two directions can be dis-
tinguished using the diffusion tensor since its eigenvalues corre-
sponding to directions in the xy-plane will be nonzero, in contrast
to the eigenvalue associated with the z-direction, which would van-
ish for the planar fiber since D� a2/D. Carrying out the explicit cal-
culations in Eq. (27), which take advantage of the fact that the
process s(t) is Gaussian, we find

Qyy ¼ �
8ð

ffiffiffi
2
p
� 1Þ

3
ffiffiffiffi
p
p

L
ðDDÞ3=2ð1þ cos wÞ ð28Þ

as the only nonzero eigenvalue in this limit. Note the similarity to
the S/V expression in Eq. (9) due to a similar physical origin of the
two effects.

In the opposite limit of small curvature, only a small fraction of
spins move from one straight segment to the other, and the main
contribution to Q comes from spins diffusing on the circle arc. Here
the position of the spins are conveniently parameterized in terms
of (x, y) = R(sin (s/R), �cos(s/R)). It is helpful to introduce the aux-
iliary complex representation

z ¼ Reis=R�ip=2 ð29Þ

and compute hz1z�2i and hz1z2i, which involve the expressions
R2heiðs1
s2Þ=Ri. Using again the Gaussian nature of s, these are readily
computed and we find that both hz1z�2i and hz1z2i are real, and thus
hx1x2i as well as hy1y2i are obtained immediately. Inserted into Eq.
(5) we finally have

Qxx ¼ �
1
2

R3

L
ð1� e�DD=R2 Þ2ð/� sin /Þ

Qyy ¼ �
1
2

R3

L
ð1� e�DD=R2 Þ2ð/þ sin /Þ: ð30Þ

Note that the angle / = p � w is the angle subtended by the circular
part of the fiber. The results in Eqs. (28)–(30) comply to the general
scaling form

Qab ¼
R3

L
gabðDD=R2;wÞ; ð31Þ

where the asymptotic behavior of the scaling function gab (x, w) can
be read off from Eqs. (28) and (30). Thus, the fiber directions (from
the eigenvectors), deflection angles and radius of curvature 1/R can
in principle be recovered from the behavior of Q. In a voxel of curv-
ing fibers, Q will be the sum of terms of the forms discussed above
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for each of the fiber bundles. Thus as noted earlier, voxels contain-
ing curving fiber bundles can be discriminated from voxels contain-
ing straight fiber bundles by a nonzero value of the displacement
correlation tensor.
3. Methods

Simulations for diffusion between parallel plates, in cylinders,
and in curved fibers were performed in Matlab (The MathWorks
Inc., Natick, MA) using Monte Carlo methods with at least 50,000
particles, a diffusion constant of 2 lm2/ms, and time step
dt = 0.001 ms. Reflecting boundaries were employed, and in all
cases the mixing time s was set to zero for simplicity.

For diffusion between parallel plates, a plate separation of
a = 5 lm was used, diffusion times of D = 1 and 10 ms, and 100
evenly spaced diffusion wave vectors from q = 0 to q = 0.6 lm�1.
The double wave vector diffusion experiment was simulated only
for parallel and anti-parallel wave vector directions.

For the cylinders, we generated a sample of 500 directions û
from a Watson distribution

f ðûÞ / expðjðû � ĉÞ2Þ; ð32Þ

a prototype axial distribution on the sphere, where j is the concen-
tration parameter, and a measure of the ‘‘precision” (in the sense of
an inverse variance) in the main direction ĉ [33], which was taken
to be the z-axis. Note that j = 0 corresponds to the isotropic distri-
bution on the sphere. An infinitely long cylinder of radius 2 lm was
Fig. 4. The signal from spins diffusing between parallel plates compared to the cumu
gradients, and (b) anti-parallel gradients. In (c), data from Fig. 7B in Komlosh et al. [13] (p
subtracting the logarithm of collinear and polar diffusion signals for the xx and zz compon
to a difference of 2p in the definition of q. Also shown with the legend ‘‘q2Qxx (Taylor)”
aligned with each of these directions, and the parallel and anti-par-
allel double wave vector diffusion experiment was simulated for a
wave vector magnitude of 0.1 lm�1 and diffusion time D = 5 ms.
Half the hemisphere of a ‘‘24-point spherical 7-design” (a set of
24 directions) [36] was used as the basis for selecting the directions
of q, and a nonlinear least squares Levenberg–Marquardt fitting
procedure supplied by Matlab was used on Eq. (6) to estimate Q.
The scatter matrix T was estimated empirically by averaging over
the 500 directions. The (negative) eigenvalues of Q were sorted in
ascending order and the eigenvalues of the scatter matrix T sorted
in descending order. This was done in order to pair the eigenvalues
of T and D appropriately—according to Eq. (20), the largest eigen-
value of Q corresponds to the smallest of T, etc. The permutations
obtained by this sorting were then applied to the eigenvectors of
the two matrices. The second and third eigenvalues resulting in this
way were averaged due to the axial symmetry of Eq. (32), and this
average is henceforth referred to as the minor eigenvalue. The en-
tire simulation was repeated for 33 values of j ranging from 0.1
to 35.

For simulations in the curving fiber, a one-dimensional random
walk representing the position along the fiber was created for each
spin. This variable was then transformed to the appropriate two-
dimensional cartesian coordinates according to the curvature and
deflection angle of the fiber. These positions were subsequently
used for calculations of the displacement correlation tensor. The
whole procedure was repeated for a large number of diffusion
times D = 0.1–100 ms and geometric parameters w = 5–150� and
R = 0.1–20 lm.
lant expansion (solid lines) and the Taylor expansion (dashed lines): (a) parallel
ig spinal cord, D = 75 ms, s = 45 ms, d = 3 ms, and T � 21 �C) have been replotted by
ents, i.e. Eq. (6). The apparently different x-axis labeling compared to Ref. [13] is due
is 1/2(S(q, q) � S(q, � q)) for q in the x-direction.
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4. Results and discussion

A simple illustration of the advantage of using the cumulant
expansion over the Taylor expansion is shown in Fig. 4a and b,
where the double wave vector diffusion signal from spins diffusing
between parallel plates is shown as a function of q2. Simulation re-
sults are plotted for two diffusion times, and for the parallel (a) and
anti-parallel (b) wave vectors. It is clear from Fig. 4 that the cumu-
lant expansion provides a better approximation of the double wave
vector diffusion signal from diffusion between parallel plates for
larger wave vectors. The cumulant expansion offers the best
approximation for small diffusion times, where the effects of
restrictions are the smallest, and for parallel gradients. The latter
is a consequence of the fact that the net effective diffusion attenu-
ation is larger for the parallel case. The Taylor expansion begins to
deviate already from q J 0.2 lm�1 (qa J 1), whereas the cumu-
lant expansion is accurate at least up to q J 0.3 lm�1

(qa J 1.5) and often much longer. This is to be compared to values
in experiments. For example, Ref. [13] uses a maximum of
q � 0.3 lm�1 in experiments in porcine spinal cord, and assuming
an axon radius of a � 6 lm, qa enters the regime in which the
cumulant expansion is more accurate. This is also the case for
the experiments in radish in Ref. [14] where qa is of the order of
2.8. A more practical application is shown in Fig. 4c, where pig
spinal cord data read off from Fig. 7b in [13] have been replotted
in terms of Eq. (6) for Qxxq

2 and Qzzq
2 versus Dq2. The use of the

cumulant expansion (difference of log signals) allows a clear linear
dependence to be easily identified from the data. Also shown is the
data plotted instead as the difference of signals (i.e. no logarithms),
where no systematic trend is revealed. The slopes in Fig. 4c corre-
spond to Qxx and Qzz, and assuming an estimate of the intracellular
water diffusion constant in the range 0.3 lm2/ms 6 D 6 2 lm2/ms
(T � 21 �C) in Eq. (16) for Qxx, this provides a realistic estimate of
the axon radius 4 lm [ a [ 9 lm in pig spinal cord white matter
[37]. It is interesting to observe that the absolute value of the slope
of Qzz is larger. The nonvanishing value of Qzz could be due to a
slight misalignment of the spinal cord with the z-axis, or it could
be a signature of real correlations in the displacement in the direc-
tion along the fibers—in the intracellular or extracellular space. If
there are restrictions along this axis, the absolute value of Qzz could
become larger than Qxx, if the restriction scale a is larger in the for-
mer direction, and depending on the value of DD: the absolute va-
lue of Tr(Q) is 0 for D = 0, and approaches a number on the order of
a2 asymptotically—the crossover occurs approximately when
DD � a2. Thus, for a compartment with restriction lengths ax and
Fig. 5. Eigenvalues of Q versus eigenvalues of T for various choices of the
concentration parameter j in the Watson distribution Eq. (32).
az, with ax	 az, we can have Qzz < Qxx when DD � a2
x and Qxx < Qzz

when DD � a2
z .

In Fig. 5, simulation results from distributions of identical cylin-
ders are shown. Here the sorted eigenvalues of Q have been plotted
against the eigenvalues of T, the scatter matrix, and the solid line
represents the theoretical expectations according to Eq. (20). The
main eigenvectors of Q and T were highly aligned, in terms of
the angle h between them, we found hcoshi = 0.94 ± 0.07 (standard
deviation). The reliability of the primary eigenvectors in identify-
ing the z-axis can also be characterized by the mean resultant vec-
tor, 1=N

PN
k n̂k, where n̂k are the normalized eigenvectors of Q, and

the sum is over the different j-values. The mean resultant vector
for the primary eigenvector of the displacement correlation tensor
was at an angle of 2.7� with the z-axis and had a length of 0.67. The
corresponding numbers for the scatter matrix were 1.5� and 0.97.
The recovery of the scatter matrix in a distribution of identical cyl-
inders is thus very robust, as evidenced by the similarity between
the simulation results and theory in Fig. 5, along with the small
scatter in angles around 0. In a practical experiment, this would al-
low one to extract second-order information of the orientational
distribution, along with the cylinder radius. In order to garner sim-
ilar information for a general pore shape, one would need indepen-
dent information about the orientation distribution of the pores.
Alternatively, additional information can be obtained by acquiring
measurements of the time dependence of Q. If the pore shape and
thus the pore anisotropy in terms of A, B and C is known, the ele-
ments of the principal direction scatter matrices can be extracted
by fitting the data points to Eqs. (6) and (22).

Note that if the cumulant expansion is continued to higher or-
der terms, the resulting signal will become sensitive to higher mo-
ments of the orientational distribution function1 allowing more
detailed information about ensemble anisotropy to be extracted.
This in turn requires higher diffusion weighting, and thus greater
angular resolution requires not only finer angular sampling, but also
higher q values—not withstanding the counteracting effects of de-
creased signal to noise. This remark applies equally to standard dif-
fusion experiments.

When the mixing time s and diffusion time D become large
compared to the time taken to diffuse across the diameter of the
cylinder, a single straight cylinder will appear as a line with
Q = 0. This provides the justification for approximating axons as
one-dimensional lines, the starting point in the analysis of the dou-
ble wave vector diffusion experiment in curved fibers. Here we be-
gin by giving an impression of the data variation by plotting in
Fig. 6a Q versus diffusion time for a subset of the radii of curvature
as given on the figure and a deflection angle of 10�. In Fig. 6b, we
show the collapse of the data for all radii and three values of w
(10�, 100� and 150� from bottom to top), and thus the tremendous
simplification offered by the scaling form Eq. (31), by plotting QabL/
R3 versus DD/R2. The collapse of the entire data set in Fig. 6b pro-
vides strong support for the proposed scaling form of the signal in a
curved fiber.

In Fig. 7a, we demonstrate the agreement with the theoretical
prediction in Eq. (28) for large diffusion times, by replotting
Fig. 6b on a double logarithmic scale, along with the theoretical
form as a dashed line. Even though Eq. (28) was derived in an
asymptotic regime of large DD/R2, it provides good agreement al-
ready from DD/R2 J 1 as evident from the figure. To illustrate
the dependence on deflection angle, theoretical and numerical re-
sults are plotted in Fig. 7b as a function of deflection angle, for
R = 2 lm and a few values of the diffusion time D (40, 60, 80 and
100 ms from top to bottom). The simulations agree well with the
theory here also.
1 Jespersen, Leigland, Cornea and Kroenke, work in progress.



Fig. 6. A subset of the simulation results for Qxx and Qyy corresponding to R = 1 lm and 20 lm (as noted at the right end of the curves) and w = 10� in the curving fiber are
shown versus diffusion time in (a) to illustrate the variability in the data. In (b) the entire data set (all radii) has been plotted as QabL/R3 versus DD/R2 for w = 10�, 100� and
150� (bottom to top) to illustrate the collapse supporting the scaling form in Eq. (31).
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Finally, plots in the regime of low diffusion times are shown in
Fig. 8, along with theoretical curves. In Fig. 8a and b QabL/R3 is
shown against DD/R2 for w = 5� (a) and w = 50� (b). Fig. 8c shows
displacement correlations as a function of deflection angle for
R = 20 lm and D = 19.6 ms. This regime is quite noisy and difficult
to assess numerically. This is due to the fact that it is a small effect
easily corrupted by contributions originating from spins in the lin-
ear segments. For very small values of DD/R2 there is a reasonable
agreement between theory and simulation in Fig. 8a and b, but as
DD/R2 increases, the ability of the theoretical expressions to
approximate the data rapidly deteriorates, and this is due to the
increasing importance of spins migrating between the circular
and linear parts of the fiber. The theoretical approximation essen-
tially treats this regime as diffusion on a circle [35] with an initial
non-zero density only at the circle arc subtended by /. However,
the real pore shape does not curve beyond this circle arc, and thus
the theoretical expression overestimates the displacement correla-
tions for spins probing the linear parts of the fiber. In fact, a numer-
ical integration of the averages in Eq. (5) using a Gaussian diffusion
propagator yields excellent agreement with the data points (not
shown). Due to the smallness of the signal, this regime is presum-
ably going to be challenging to assess experimentally. Adapting the
voxel size so as to maximize the volume fraction occupied by the
curving part of the fiber would be essential.
Fig. 7. (a) QyyL/R3 versus DD/R2 for a deflection angle of 20� on a log–log plot, and (b) Q
100 ms from top to bottom). Theoretical predictions are shown as lines.
The presence of a curving fiber, along with an estimate of the ra-
dius of curvature and deflection angle can thus in principle be in-
ferred from the eigenvectors of Q. Several aspects complicate this
in practice. The most obvious ones are the deviations of real fiber
tracts from tubes, and the presence of extra-cellular water. This
will imply that Q is not zero for straight fibers, even for Ds� a2,
but perhaps a sufficiently low value of Tr(Q) can be used as a
threshold to indicate the presence of a curving fiber, or a more re-
fined probabilistic approach could be pursued by including infor-
mation from other MR experiments. It may also be that a careful
choice of pulse sequence parameters, especially the time parame-
ters, can ameliorate this problem since the contributions to Q from
compartments of different sizes depend sensitively on s and D.
Note that to the extent that extracellular diffusion can be approx-
imated as effectively Gaussian diffusion, as assumed in several cur-
rent theoretical models [38–42], it does not contribute to Q, but
may serve to lower the signal to noise ratio in the estimate of Q.
Alternatively, it may be necessary to employ intracellular markers
such as NAA [43]—this seems not to be an unreasonable require-
ment, given the complex geometrical information one is trying to
extract from the diffusion signal.

All the results presented here were derived under the narrow
pulse regime, c.f. Eq. (1). While this has the advantage of facilitat-
ing a clear physical picture, it represents a constraint which is fre-
yy versus deflection angle w for various choices of diffusion time D (40, 60, 80 and



Fig. 8. QabL/R3 versus DD/R2 for w = 5� (a) and for w = 50� (b). In (c) the dependence of Q on deflection angle for R = 20 lm and D = 19.6 ms is shown. Theoretical predictions
are shown as lines.
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quently challenging to meet in practice. It therefore remains to be
analyzed how violations of these idealized assumptions affect the
results presented in this work. The framework presented in [20]
would presumably be well-suited to address these questions.
5. Conclusion

We presented a new analysis of the Gaussian phase approxima-
tion of the double wave vector diffusion experiment in the narrow
pulse limit. We focused in particular on the displacement correla-
tion tensor Q, discussing its physical interpretation and properties
in some depth. A notable result was an expression relating the
short time behavior of the displacement correlation tensor to the
surface to volume ratio of the pore space, analogous to the classical
result for the diffusion coefficient [26,27]. We derived a simple and
compact expression showing how the displacement correlation
tensor embodies information about pore shape and ensemble
properties in collections of cylinders, and for completely general
pore shapes. In the last part, we addressed the ability of the double
wave vector diffusion experiment to detect fiber curvature and
deflection angle by analyzing its behavior in an idealized model
of a curving fiber. We derived exact expressions in the limits of
long and short diffusion times, and noted the potential for detect-
ing and characterizing high curvature fiber populations.
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